- Home
- Standard 11
- Mathematics
7.Binomial Theorem
medium
गुणांक ज्ञात कीजिए
$(x+3)^{8}$ में $x^{5}$ का
A
$1512$
B
$1512$
C
$1512$
D
$1512$
Solution
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by
${T_{r + 1}} = {\,^n}{C_r}{a^{n – r}}{b^r}$
Assuming that $x^{5}$ occurs in the $(r+1)^{t h}$ term of the expansion $(x+3)^{8},$ we obtain
${T_{r + 1}} = {\,^8}{C_r}{(x)^{8 – r}}{(3)^r}$
Comparing the indices of $x$ in $x^{5}$ in $T_{r+1},$
We obtain $r=3$
Thus, the coefficient of $x^{5}$ is ${\,^8}{C_3}{(3)^3} = \frac{{8!}}{{3!5!}} \times {3^3} = \frac{{8 \cdot 7 \cdot 6 \cdot 5!}}{{3 \cdot 2 \cdot 5!}} \cdot {3^3} = 1512$
Standard 11
Mathematics